Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 16, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263257

RESUMO

The human hypothalamus modulates mental health by balancing interactions between hormonal fluctuations and stress responses. Stress-induced progesterone release activates progesterone receptors (PR) in the human brain and triggers alterations in neuropeptides/neurotransmitters. As recent epidemiological studies have associated peripheral progesterone levels with suicide risks in humans, we mapped PR distribution in the human hypothalamus in relation to age and sex and characterized its (co-) expression in specific cell types. The infundibular nucleus (INF) appeared to be the primary hypothalamic structure via which progesterone modulates stress-related neural circuitry. An elevation of the number of pro-opiomelanocortin+ (POMC, an endogenous opioid precursor) neurons in the INF, which was due to a high proportion of POMC+ neurons that co-expressed PR, was related to suicide in patients with mood disorders (MD). MD donors who died of legal euthanasia were for the first time enrolled in a postmortem study to investigate the molecular signatures related to fatal suicidal ideations. They had a higher proportion of PR co-expressing POMC+ neurons than MD patients who died naturally. This indicates that the onset of endogenous opioid activation in MD with suicide tendency may be progesterone-associated. Our findings may have implications for users of progesterone-enriched contraceptives who also have MD and suicidal tendencies.


Assuntos
Receptores de Progesterona , Suicídio , Humanos , Progesterona , Analgésicos Opioides , Pró-Opiomelanocortina , Hipotálamo
2.
Neurobiol Dis ; 183: 106191, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290577

RESUMO

The mood disorders major depressive disorder (MDD) and bipolar disorder (BD) are highly prevalent worldwide. Women are more vulnerable to these psychopathologies than men. The bed nucleus of the stria terminalis (BNST), the amygdala, and the hypothalamus are the crucial interconnected structures involved in the stress response. In mood disorders, stress systems in the brain are put into a higher gear. The BNST is implicated in mood, anxiety, and depression. The stress-related neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is highly abundant in the central BNST (cBNST). In this study, we investigated alterations in PACAP in the cBNST of patients with mood disorders. Immunohistochemical (IHC) staining of PACAP and in situ hybridization (ISH) of PACAP mRNA were performed on the cBNST of post-mortem human brain samples. Quantitative IHC revealed elevated PACAP levels in the cBNST in both mood disorders, MDD and BD, but only in men, not in women. The PACAP ISH was negative, indicating that PACAP is not produced in the cBNST. The results support the possibility that PACAP innervation of the cBNST plays a role in mood disorder pathophysiology in men.


Assuntos
Transtorno Depressivo Maior , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Núcleos Septais , Feminino , Humanos , Masculino , Transtornos do Humor , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleos Septais/metabolismo , Estresse Psicológico
3.
Neurobiol Dis ; 183: 106169, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257664

RESUMO

Neuroactive steroids are known neuroprotective agents and neurotransmitter regulators. We previously found that expression of the enzymes synthesizing 5α-dihydroprogesterone (5α-DHP), allopregnanolone (ALLO), and dehydroepiandrosterone sulfate (DHEAS) were reduced in the substantia nigra (SN) of Parkinson's Disease (PD) brain. Here, concentrations of a comprehensive panel of steroids were measured in human post-mortem brains of PD patients and controls. Gas chromatography-mass spectrometry (GC/MS) was used to measure steroid levels in SN (involved in early symptoms) and prefrontal cortex (PFC) (involved later in the disease) of five control (CTR) and nine PD donors, divided into two groups: PD4 (PD-Braak stages 1-4) and PD6 (PD-Braak stages 5-6). In SN, ALLO was increased in PD4 compared to CTR and 5α-DHP and ALLO levels were diminished in PD6 compared to PD4. The ALLO metabolite 3α5α20α-hexahydroprogesterone (3α5α20α-HHP) was higher in PD4 compared to CTR. In PFC, 3α5α20α-HHP was higher in PD4 compared to both CTR and PD6. The effects of 5α-DHP, ALLO and DHEAS were tested on human post-mortem brain slices of patients and controls in culture. RNA expression of genes involved in neuroprotection, neuroinflammation and neurotransmission was analysed after 5 days of incubation with each steroid. In PD6 slices, both 5α-DHP and ALLO induced an increase of the glutamate reuptake effector GLAST1, while 5α-DHP also increased gene expression of the neuroprotective TGFB. In CTR slices, ALLO caused reduced expression of IGF1 and GLS, while DHEAS reduced the expression of p75 and the anti-apoptotic molecule APAF1. Together these data suggest that a potentially protective upregulation of ALLO occurs at early stages of PD, followed by a downregulation of progesterone metabolites at later stages that may exacerbate the pathological changes, especially in SN. Neuroprotective effects of neurosteroids are thus dependent on the neuropathological stage of the disease.


Assuntos
Fármacos Neuroprotetores , Neuroesteroides , Doença de Parkinson , Humanos , Neuroesteroides/metabolismo , Fármacos Neuroprotetores/farmacologia , 5-alfa-Di-Hidroprogesterona/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Progesterona/farmacologia , Progesterona/metabolismo , Encéfalo/metabolismo , Esteroides/metabolismo
4.
Psychol Med ; 53(16): 7537-7549, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37226771

RESUMO

BACKGROUND: Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is involved in the stress response and may play a key role in mood disorders, but no information is available on PACAP for the human brain in relation to mood disorders. METHODS: PACAP-peptide levels were determined in a major stress-response site, the hypothalamic paraventricular nucleus (PVN), of people with major depressive disorder (MDD), bipolar disorder (BD) and of a unique cohort of Alzheimer's disease (AD) patients with and without depression, all with matched controls. The expression of PACAP-(Adcyap1mRNA) and PACAP-receptors was determined in the MDD and BD patients by qPCR in presumed target sites of PACAP in stress-related disorders, the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). RESULTS: PACAP cell bodies and/or fibres were localised throughout the hypothalamus with differences between immunocytochemistry and in situ hybridisation. In the controls, PACAP-immunoreactivity-(ir) in the PVN was higher in women than in men. PVN-PACAP-ir was higher in male BD compared to the matched male controls. In all AD patients, the PVN-PACAP-ir was lower compared to the controls, but higher in AD depressed patients compared to those without depression. There was a significant positive correlation between the Cornell depression score and PVN-PACAP-ir in all AD patients combined. In the ACC and DLPFC, alterations in mRNA expression of PACAP and its receptors were associated with mood disorders in a differential way depending on the type of mood disorder, suicide, and psychotic features. CONCLUSION: The results support the possibility that PACAP plays a role in mood disorder pathophysiology.


Assuntos
Doença de Alzheimer , Transtorno Bipolar , Transtorno Depressivo Maior , Feminino , Humanos , Masculino , Doença de Alzheimer/metabolismo , Transtorno Bipolar/metabolismo , Depressão , Transtorno Depressivo Maior/metabolismo , Hipotálamo/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Córtex Pré-Frontal/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(13): e2118803119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312355

RESUMO

SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms.


Assuntos
Relógios Circadianos , Ritmo Circadiano/fisiologia , Humanos , Luz , Fotobiologia , Núcleo Supraquiasmático/fisiologia
6.
Acta Neuropathol ; 142(6): 1045-1064, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536123

RESUMO

Since the discovery of ketamine anti-depressant effects in last decade, it has effectively revitalized interest in investigating excitatory synapses hypothesis in the pathogenesis of depression. In the present study, we aimed to reveal the excitatory synaptic regulation of corticotropin-releasing hormone (CRH) neuron in the hypothalamus, which is the driving force in hypothalamic-pituitary-adrenal (HPA) axis regulation. This study constitutes the first observation of an increased density of PSD-93-CRH co-localized neurons in the hypothalamic paraventricular nucleus (PVN) of patients with major depression. PSD-93 overexpression in CRH neurons in the PVN induced depression-like behaviors in mice, accompanied by increased serum corticosterone level. PSD-93 knockdown relieved the depression-like phenotypes in a lipopolysaccharide (LPS)-induced depression model. Electrophysiological data showed that PSD-93 overexpression increased CRH neurons synaptic activity, while PSD-93 knockdown decreased CRH neurons synaptic activity. Furthermore, we found that LPS induced increased the release of glutamate from microglia to CRH neurons resulted in depression-like behaviors using fiber photometry recordings. Together, these results show that PSD-93 is involved in the pathogenesis of depression via increasing the synaptic activity of CRH neurons in the PVN, leading to the hyperactivity of the HPA axis that underlies depression-like behaviors.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Depressão/metabolismo , Guanilato Quinases/metabolismo , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/metabolismo , Transmissão Sináptica/fisiologia , Regulação para Cima
7.
Handb Clin Neurol ; 181: 427-443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34238476

RESUMO

Gender identity (an individual's perception of being male or female) and sexual orientation (heterosexuality, homosexuality, or bisexuality) are programmed into our brain during early development. During the intrauterine period in the second half of pregnancy, a testosterone surge masculinizes the fetal male brain. If such a testosterone surge does not occur, this will result in a feminine brain. As sexual differentiation of the brain takes place at a much later stage in development than sexual differentiation of the genitals, these two processes can be influenced independently of each other and can result in gender dysphoria. Nature produces a great variability for all aspects of sexual differentiation of the brain. Mechanisms involved in sexual differentiation of the brain include hormones, genetics, epigenetics, endocrine disruptors, immune response, and self-organization. Furthermore, structural and functional differences in the hypothalamus relating to gender dysphoria and sexual orientation are described in this review. All the genetic, postmortem, and in vivo scanning observations support the neurobiological theory about the origin of gender dysphoria, i.e., it is the sizes of brain structures, the neuron numbers, the molecular composition, functions, and connectivity of brain structures that determine our gender identity or sexual orientation. There is no evidence that one's postnatal social environment plays a crucial role in the development of gender identity or sexual orientation.


Assuntos
Identidade de Gênero , Transexualidade , Feminino , Humanos , Hipotálamo , Masculino , Gravidez , Diferenciação Sexual , Comportamento Sexual
8.
Neuro Endocrinol Lett ; 42(2): 128-132, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34217169

RESUMO

BACKGROUND: Estrogens mediate various effects in the brain not only via classical estrogen receptors (ERs) but also through their splice variants. We showed earlier that the ERα splice variant TADDI is abundantly expressed in the human hypothalamic supraoptic nucleus (SON). METHODS: In the present study we aimed at determining a possible effect of TADDI on human SON neuronal morphometric parameters in 58 control patients from 20 to 94 years old and in 26 patients with Alzheimer's disease (AD) aged 54-94 years old. The size of neuronal nuclear and perikaryal profiles was determined as measure of the neuronal metabolic activity in relation to the intensity of TADDI immunocytochemical staining. The size of SON neuronal nuclei and perikarya were also measured with respect to the wild type (wt) ERα nuclear staining in the group of 11 elderly patients. RESULTS: Independently of gender, age or AD status SON neuronal nuclei and perikarya were significantly smaller in neurons with moderate and strong TADDI staining than in neurons that did not express this ERα splice variant. On the contrary, neuronal nuclei and perikarya were considerably larger in SON neurons with moderate and strong nuclear staining for wt ERα as compared to neurons that showed an absence of the classic receptor. It is noteworthy that TADDI immunoreactivity was increased in control patients with pneumonia and/or respiratory insufficiency. CONCLUSIONS: We showed for the first time the association of the ERα splice variant TADDI with neuronal morphometric parameters in the human postmortem brain tissue.

9.
J Neuroendocrinol ; 33(7): e12994, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34156126

RESUMO

Prader-Willi Syndrome (PWS) is a rare and incurable congenital neurodevelopmental disorder, resulting from the absence of expression of a group of genes on the paternally acquired chromosome 15q11-q13. Phenotypical characteristics of PWS include infantile hypotonia, short stature, incomplete pubertal development, hyperphagia and morbid obesity. Hypothalamic dysfunction in controlling body weight and food intake is a hallmark of PWS. Neuroimaging studies have demonstrated that PWS subjects have abnormal neurocircuitry engaged in the hedonic and physiological control of feeding behavior. This is translated into diminished production of hypothalamic effector peptides which are responsible for the coordination of energy homeostasis and satiety. So far, studies with animal models for PWS and with human post-mortem hypothalamic specimens demonstrated changes particularly in the infundibular and the paraventricular nuclei of the hypothalamus, both in orexigenic and anorexigenic neural populations. Moreover, many PWS patients have a severe endocrine dysfunction, e.g. central hypogonadism and/or growth hormone deficiency, which may contribute to the development of increased fat mass, especially if left untreated. Additionally, the role of non-neuronal cells, such as astrocytes and microglia in the hypothalamic dysregulation in PWS is yet to be determined. Notably, microglial activation is persistently present in non-genetic obesity. To what extent microglia, and other glial cells, are affected in PWS is poorly understood. The elucidation of the hypothalamic dysfunction in PWS could prove to be a key feature of rational therapeutic management in this syndrome. This review aims to examine the evidence for hypothalamic dysfunction, both at the neuropeptidergic and circuitry levels, and its correlation with the pathophysiology of PWS.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Rede Nervosa/fisiopatologia , Síndrome de Prader-Willi , Animais , Humanos , Hiperfagia/etiologia , Hiperfagia/metabolismo , Hiperfagia/psicologia , Hipogonadismo/etiologia , Hipogonadismo/metabolismo , Hipogonadismo/psicologia , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Neuropeptídeos/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/psicologia , Síndrome de Prader-Willi/complicações , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/patologia , Síndrome de Prader-Willi/psicologia
10.
Brain Behav Immun ; 92: 127-138, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249171

RESUMO

Growing evidence indicates that microglia activation and a neuroinflammatory trigger contribute to dopaminergic cell loss in Parkinson's disease (PD). Furthermore, increased density of histaminergic fibers and enhanced histamine levels have been observed in the substantia nigra of PD-postmortem brains. Histamine-induced microglial activation is mediated by the histamine-4 receptor (H4R). In the current study, gene set enrichment and pathway analyses of a PD basal ganglia RNA-sequencing dataset revealed that upregulation of H4R was in the top functional category for PD treatment targets. Interestingly, the H4R antagonist JNJ7777120 normalized the number of nigrostriatal dopaminergic fibers and striatal dopamine levels in a rotenone-induced PD rat model. These improvements were accompanied by a reduction of α-synuclein-positive inclusions in the striatum. In addition, intracerebroventricular infusion of JNJ7777120 alleviated the morphological changes in Iba-1-positive microglia and resulted in a lower tumor necrosis factor-α release from this brain region, as well as in ameliorated apomorphine-induced rotation behaviour. Finally, JNJ7777120 also restored basal ganglia function by decreasing the levels of γ-aminobutyric acid (GABA) and the 5-hydroxyindoleactic acid to serotonin (5-HIAA/5-HT) concentration ratios in the striatum of the PD model. Our results highlight H4R inhibition in microglia as a promising and specific therapeutic target to reduce or prevent neuroinflammation, and as such the development of PD pathology.


Assuntos
Corpo Estriado , Doença de Parkinson , Receptores Histamínicos H4/antagonistas & inibidores , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Microglia/metabolismo , Degeneração Neural/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Ratos , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
11.
Transl Psychiatry ; 10(1): 396, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177511

RESUMO

Early-life stress (ELS) leads to stress-related psychopathology in adulthood. Although dysfunction of corticotropin-releasing hormone (CRH) signaling in the bed nucleus of the stria terminalis (BNST) mediates chronic stress-induced maladaptive affective behaviors that are historically associated with mood disorders such as anxiety and depression, it remains unknown whether ELS affects CRH function in the adult BNST. Here we applied a well-established ELS paradigm (24 h maternal separation (MS) at postnatal day 3) and assessed the effects on CRH signaling and electrophysiology in the oval nucleus of BNST (ovBNST) of adult male mouse offspring. ELS increased maladaptive affective behaviors, and amplified mEPSCs and decreased M-currents (a voltage-gated K+ current critical for stabilizing membrane potential) in ovBNST CRH neurons, suggesting enhanced cellular excitability. Furthermore, ELS increased the numbers of CRH+ and PACAP+ (the pituitary adenylate cyclase-activating polypeptide, an upstream CRH regulator) cells and decreased STEP+ (striatal-enriched protein tyrosine phosphatase, a CRH inhibitor) cells in BNST. Interestingly, ELS also increased BNST brain-derived neurotrophic factor (BDNF) expression, indicating enhanced neuronal plasticity. These electrophysiological and behavioral effects of ELS were reversed by chronic application of the CRHR1-selective antagonist R121919 into ovBNST, but not when BDNF was co-administered. In addition, the neurophysiological effects of BDNF on M-currents and mEPSCs in BNST CRH neurons mimic effects and were abolished by PKC antagonism. Together, our findings indicate that ELS results in a long-lasting activation of CRH signaling in the mouse ovBNST. These data highlight a regulatory role of CRHR1 in the BNST and for BDNF signaling in mediating ELS-induced long-term behavioral changes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hormônio Liberador da Corticotropina , Núcleos Septais , Estresse Psicológico , Animais , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Privação Materna , Núcleos Septais/metabolismo
13.
J Neurosci ; 40(12): 2519-2537, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32054675

RESUMO

The bed nucleus of the stria terminalis (BNST) is a forebrain region highly responsive to stress that expresses corticotropin-releasing hormone (CRH) and is implicated in mood disorders, such as anxiety. However, the exact mechanism by which chronic stress induces CRH-mediated dysfunction in BNST and maladaptive behaviors remains unclear. Here, we first confirmed that selective acute optogenetic activation of the oval nucleus BNST (ovBNST) increases maladaptive avoidance behaviors in male mice. Next, we found that a 6 week chronic variable mild stress (CVMS) paradigm resulted in maladaptive behaviors and increased cellular excitability of ovBNST CRH neurons by potentiating mEPSC amplitude, altering the resting membrane potential, and diminishing M-currents (a voltage-gated K+ current that stabilizes membrane potential) in ex vivo slices. CVMS also increased c-fos+ cells in ovBNST following handling. We next investigated potential molecular mechanism underlying the electrophysiological effects and observed that CVMS increased CRH+ and pituitary adenylate cyclase-activating polypeptide+ (PACAP; a CRH upstream regulator) cells but decreased striatal-enriched protein tyrosine phosphatase+ (a STEP CRH inhibitor) cells in ovBNST. Interestingly, the electrophysiological effects of CVMS were reversed by CRHR1-selective antagonist R121919 application. CVMS also activated protein kinase A (PKA) in BNST, and chronic infusion of the PKA-selective antagonist H89 into ovBNST reversed the effects of CVMS. Coadministration of the PKA agonist forskolin prevented the beneficial effects of R121919. Finally, CVMS induced an increase in surface expression of phosphorylated GluR1 (S845) in BNST. Collectively, these findings highlight a novel and indispensable stress-induced role for PKA-dependent CRHR1 signaling in activating BNST CRH neurons and mediating maladaptive behaviors.SIGNIFICANCE STATEMENT Chronic stress and acute activation of oval bed nucleus of the stria terminalis (ovBNST) induces maladaptive behaviors in rodents. However, the precise molecular and electrophysiological mechanisms underlying these effects remain unclear. Here, we demonstrate that chronic variable mild stress activates corticotropin-releasing hormone (CRH)-associated stress signaling and CRH neurons in ovBNST by potentiating mEPSC amplitude and decreasing M-current in male mice. These electrophysiological alterations and maladaptive behaviors were mediated by BNST protein kinase A-dependent CRHR1 signaling. Our results thus highlight the importance of BNST CRH dysfunction in chronic stress-induced disorders.


Assuntos
Adaptação Psicológica , Hormônio Liberador da Corticotropina/fisiologia , Núcleos Septais/fisiologia , Transdução de Sinais/fisiologia , Estresse Psicológico/psicologia , Animais , Doença Crônica , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Genes fos , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Canais de Potássio/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores
14.
Dement Geriatr Cogn Disord ; 47(4-6): 274-280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31319413

RESUMO

BACKGROUND: The hypothalamic medial mamillary (MMN) and the tuberomamillary (TMN) nuclei are important hubs in memory circuits. Previous studies determining the neuronal Golgi complex size showed decreased metabolic activity of the TMN neurons in both Alzhei-mer's disease (AD) and vascular dementia (VD), and no obvious decline in the MMN of these patients. OBJECTIVES: In the present study, we aimed at determining whether other morphometric parameters that are informative about the neuronal metabolic activity are changed in the MMN of AD and VD patients and whether they can be related to the expression of the nuclear estrogen receptor α (ERα) that can mediate neurotrophic effects of estrogens in the brain. METHOD: The size of neuronal nuclei and perikarya was determined in AD, VD, and nondemented control patients, in relation to the expression of the nuclear ERα. RESULTS: We found that neuronal nuclear and perikaryal sizes were significantly larger in the MMN in VD than in control patients (p < 0.01). Neuronal nuclei (p < 0.05), but not perikarya were larger in AD than in control patients. Neuronal nuclei and perikarya were larger if nuclear ERα staining was present. The intensity of ERα in the neuronal nuclei was significantly correlated with both nuclear and perikaryal sizes (p < 0.007). CONCLUSIONS: The human MMN shows a remarkable activation in aging and extra activation in dementias (AD and VD) that may be mediated by nuclear ERα. This makes it so far a unique brain area to study compensatory mechanisms that may prevent neurodegeneration.


Assuntos
Doença de Alzheimer/patologia , Núcleo Celular/patologia , Demência Vascular/patologia , Receptor alfa de Estrogênio/metabolismo , Neurônios/patologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Tamanho Celular , Feminino , Humanos , Masculino , Polimorfismo Genético , Receptores de Estrogênio
15.
Diabetologia ; 62(11): 2088-2093, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31327049

RESUMO

AIMS/HYPOTHESIS: The central pacemaker of the mammalian biological timing system is located within the suprachiasmatic nucleus (SCN) in the anterior hypothalamus. Together with the peripheral clocks, this central brain clock ensures a timely, up-to-date and proper behaviour for an individual throughout the day-night cycle. A mismatch between the central and peripheral clocks results in a disturbance of daily rhythms in physiology and behaviour. It is known that the number of rhythmically expressed genes is reduced in peripheral tissue of individuals with type 2 diabetes mellitus. However, it is not known whether the central SCN clock is also affected in the pathogenesis of type 2 diabetes. In the current study, we compared the profiles of the SCN neurons and glial cells between type 2 diabetic and control individuals. METHODS: We collected post-mortem hypothalamic tissues from 28 type 2 diabetic individuals and 12 non-diabetic control individuals. We performed immunohistochemical analysis for three SCN neuropeptides, arginine vasopressin (AVP), vasoactive intestinal polypeptide (VIP) and neurotensin (NT), and for two proteins expressed in glial cells, ionised calcium-binding adapter molecule 1 (IBA1, a marker of microglia) and glial fibrillary acidic protein (GFAP, a marker of astroglial cells). RESULTS: The numbers of AVP immunoreactive (AVP-ir) and VIP-ir neurons and GFAP-ir astroglial cells in the SCN of type 2 diabetic individuals were significantly decreased compared with the numbers in the SCN of the control individuals. In addition, the relative intensity of AVP immunoreactivity was reduced in the individuals with type 2 diabetes. The number of NT-ir neurons and IBA1-ir microglial cells in the SCN was similar in the two groups. CONCLUSIONS/INTERPRETATION: Our data show that type 2 diabetes differentially affects the numbers of AVP- and VIP-expressing neurons and GFAP-ir astroglial cells in the SCN, each of which could affect the daily rhythmicity of the SCN biological clock machinery. Therefore, for effectively treating type 2 diabetes, lifestyle changes and/or medication to normalise central biological clock functioning might be helpful.


Assuntos
Arginina Vasopressina/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Neuroglia/metabolismo , Neurônios/metabolismo , Núcleo Supraquiasmático/citologia , Ritmo Circadiano , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Estilo de Vida , Microglia/citologia , Microglia/metabolismo , Neuropeptídeos/metabolismo , Neurofisinas , Precursores de Proteínas , Peptídeo Intestinal Vasoativo/metabolismo , Vasopressinas
16.
J Comp Neurol ; 526(11): 1806-1819, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29663392

RESUMO

Sushi repeat-containing protein X-linked 2 (SRPX2) is a novel protein associated with language development, synaptic plasticity, tissue remodeling, and angiogenesis. We investigated the expression and spatial localization of SRPX2 in normal mouse, rat, monkey, and human brain using in situ hybridization and immunohistochemistry. Antibody specificity was determined using in vitro siRNA based silencing of SRPX2. Cell type-specific expression was verified by double-labeling with oxytocin or vasopressin. Western blot was used to detect SRPX2 protein in rat and human plasma and cerebrospinal fluid. Unexpectedly, SRPX2 mRNA expression levels were strikingly higher in the hypothalamus as compared to the cortex. All SRPX2 immunoreactive (ir) neurons were localized in the hypothalamic paraventricular, periventricular, and supraoptic nuclei in mouse, rat, monkey, and human brain. SRPX2 colocalized with vasopressin or oxytocin in paraventricular and supraoptic neurons. Hypothalamic SRPX2-ir positive neurons gave origin to dense projections traveling ventrally and caudally toward the hypophysis. Intense axonal varicosities and terminal arborizations were identified in the rat and human neurohypophysis. SRPX2-ir cells were also found in the adenohypophysis. Light SRPX2-ir projections were observed in the dorsal and ventral raphe, locus coeruleus, and the nucleus of the solitary tract in mouse, rat and monkey. SRPX2 protein was also detected in plasma and CSF. Our data revealed intense phylogenetically conserved expression of SRPX2 protein in distinct hypothalamic nuclei and the hypophysis, suggesting its active role in the hypothalamo-pituitary axis. The presence of SRPX2 protein in the plasma and CSF suggests that some of its functions depend on secretion into body fluids.


Assuntos
Sequência Conservada , Sistema Hipotálamo-Hipofisário/metabolismo , Proteínas de Membrana/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Química Encefálica , Linhagem Celular , Córtex Cerebral/metabolismo , Humanos , Hipotálamo/metabolismo , Macaca , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas de Neoplasias , Proteínas do Tecido Nervoso , Filogenia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley
18.
J Neurosci ; 37(39): 9361-9379, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28842419

RESUMO

Repulsive guidance molecule member a (RGMa) is a membrane-associated or released guidance molecule that is involved in axon guidance, cell patterning, and cell survival. In our previous work, we showed that RGMa is significantly upregulated in the substantia nigra of patients with Parkinson's disease. Here we demonstrate the expression of RGMa in midbrain human dopaminergic (DA) neurons. To investigate whether RGMa might model aspects of the neuropathology of Parkinson's disease in mouse, we targeted RGMa to adult midbrain dopaminergic neurons using adeno-associated viral vectors. Overexpression of RGMa resulted in a progressive movement disorder, including motor coordination and imbalance, which is typical for a loss of DA release in the striatum. In line with this, RGMa induced selective degeneration of dopaminergic neurons in the substantia nigra (SN) and affected the integrity of the nigrostriatal system. The degeneration of dopaminergic neurons was accompanied by a strong microglia and astrocyte activation. The behavioral, molecular, and anatomical changes induced by RGMa in mice are remarkably similar to the clinical and neuropathological hallmarks of Parkinson's disease. Our data indicate that dysregulation of RGMa plays an important role in the pathology of Parkinson's disease, and antibody-mediated functional interference with RGMa may be a disease modifying treatment option.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is a neurodegenerative disease characterized by severe motor dysfunction due to progressive degeneration of mesencephalic dopaminergic (DA) neurons in the substantia nigra. To date, there is no regenerative treatment available. We previously showed that repulsive guidance molecule member a (RGMa) is upregulated in the substantia nigra of PD patients. Adeno-associated virus-mediated targeting of RGMa to mouse DA neurons showed that overexpression of this repulsive axon guidance and cell patterning cue models the behavioral and neuropathological characteristics of PD in a remarkable way. These findings have implications for therapy development as interfering with the function of this specific axon guidance cue may be beneficial to the survival of DA neurons.


Assuntos
Proteínas do Tecido Nervoso/genética , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Substância Negra/metabolismo , Substância Negra/patologia
19.
Physiol Behav ; 171: 61-68, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28057567

RESUMO

During development, the exposure to testosterone, and its conversion to estradiol by an enzyme complex termed aromatase, appears to be essential in adult male rats for the expression of typical male sexual behavior and female-sex preference. Some hypothalamic areas are the supposed neural bases of sexual preference/orientation; for example, male-oriented rams have a reduced volume of the sexually dimorphic nucleus (oSDN), while in homosexual men this nucleus does not differ from that of heterosexual men. In contrast, homosexual men showed a larger number of vasopressinergic cells in the suprachiasmatic nucleus (SCN). Interestingly, male rats perinatally treated with an aromatase inhibitor, 1,4,6-androstatriene-3,17-dione (ATD), also showed bisexual preference and an increased number of vasopressinergic neurons in the SCN. However, this steroidal aromatase inhibitor has affinity for all three steroid receptors. Recently, we reported that the prenatal administration of the selective aromatase inhibitor, letrozole, produced a subpopulation of males with same-sex preference. The aim of this study was to compare the volume and number of cells of the SDN and SCN (the latter nucleus was immunohistochemically stained for vasopressin) between males treated with letrozole with same-sex preference, males treated with letrozole with female preference and control males with female preference. Results showed that all males prenatally treated with letrozole have a reduced volume and estimated cell number in the SDN and SCN, independent of their partner preference. These results indicate that the changes in these brain areas are not related to sexual preference, but rather to the effects of letrozole. The divergent results may be explained by species differences as well as by the critical windows during which the aromatase inhibitor was administered.


Assuntos
Antineoplásicos/toxicidade , Preferência de Acasalamento Animal/efeitos dos fármacos , Nitrilas/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Área Pré-Óptica/efeitos dos fármacos , Núcleo Supraquiasmático/efeitos dos fármacos , Triazóis/toxicidade , Análise de Variância , Animais , Contagem de Células , Feminino , Letrozol , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Diferenciação Sexual , Parceiros Sexuais , Vasopressinas/metabolismo
20.
J Clin Endocrinol Metab ; 101(6): 2380-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27046106

RESUMO

CONTEXT: Since the discovery of its central role in reproduction, our functional neuroanatomical knowledge of the hypothalamic kisspeptin system is predominantly based on animal studies. Although sex differences in kisspeptin expression have been shown in humans in adulthood, the developmental origin of this sex difference is unknown. OBJECTIVES: Our objectives were to determine the following: 1) when during development the sex difference in kisspeptin expression in the infundibular nucleus would emerge and 2) whether this sex difference is related to sexual orientation or transsexuality. DESIGN AND SETTING: Postmortem hypothalamic tissues were collected by The Netherlands Brain Bank, and sections were stained for kisspeptin by immunohistochemistry. PATIENTS: Hypothalami of 43 control subjects were categorized into three periods: infant/prepubertal (six girls, seven boys), adult (11 women, seven men), and elderly (six aged women, six aged men). Eight male-to-female (MTF) transsexuals, three HIV(+) heterosexual men, and five HIV(+) homosexual men were also analyzed. MAIN OUTCOME MEASURE: We estimated the total number of kisspeptin-immunoreactive neurons within the infundibular nucleus. RESULTS: Quantitative analysis confirmed that the human infundibular kisspeptin system exhibits a female-dominant sex difference. The number of kisspeptin neurons is significantly greater in the infant/prepubertal and elderly periods compared with the adult period. Finally, in MTF transsexuals, but not homosexual men, a female-typical kisspeptin expression was observed. CONCLUSIONS: These findings suggest that infundibular kisspeptin neurons are sensitive to circulating sex steroid hormones throughout life and that the sex reversal observed in MTF transsexuals might reflect, at least partially, an atypical brain sexual differentiation.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Identidade de Gênero , Kisspeptinas/metabolismo , Caracteres Sexuais , Sexualidade/fisiologia , Transexualidade/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA